منابع مشابه
Cutset sampling for Bayesian networks Cutset sampling for Bayesian networks
The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime appro...
متن کاملCutset Sampling for Bayesian Networks
The paper presents a new sampling methodology for Bayesian networks that samples only a subset of variables and applies exact inference to the rest. Cutset sampling is a network structure-exploiting application of the Rao-Blackwellisation principle to sampling in Bayesian networks. It improves convergence by exploiting memory-based inference algorithms. It can also be viewed as an anytime appro...
متن کاملAn Empirical Study of w-Cutset Sampling for Bayesian Networks
The paper studies empirically the time-space trade-off between sampling and inference in the cutset sampling algorithm. The algorithm samples over a subset of nodes in a Bayesian network and applies exact inference over the rest. As the size of the sampling space decreases, requiring less samples for convergence, the time for generating each single sample increases. Algorithm wcutset sampling s...
متن کاملcutset effect in Bayesian networks
The paper investigates the behavior of iterative belief propagation algorithm (IBP) in Bayesian networks with loops. In multiply-connected network, IBP is only guaranteed to converge in linear time to the correct posterior marginals when evidence nodes form a loop-cutset. We propose an -cutset criteria that IBP will converge and compute posterior marginals close to correct when a single value i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Artificial Intelligence Research
سال: 2007
ISSN: 1076-9757
DOI: 10.1613/jair.2149